Palladium-Catalyzed Intramolecular Coupling of Arenes and Unactivated Alkanes in Air

Benoit Liegault and Keith Fagnou, Organomettalics, ASAP

Jared Hammill Current Literature Presentation 9/27/08

Requirement for Pre-Activation

- The scientific and commercial value of biarys has led to the discovery of a variety of transition metal catalyzed coupling reactions
 - Suzuki, Stille, Negishi, Kumada, etc.

Stuart, et al., Science, 316, 1172

Fagnou Group

"A major focus of ongoing research is directed at changing the current practice of molecule pre-activation in the construction of new carbon-carbon bonds."

Unactivated Sp³ C-H Coupling

Reaction Optimization

Base Screen:

NaO-tBu, Na₂CO₃, Rb₂CO₃ NaOPiv, KOPiv, CsOPiv, (i-Pr)₂NEt, DABCO

Terminal Oxidant Screen:

Base (20	%) Additive	SM Consumption	NMR Yield of 2	NMR Yield of 3
NaO-t-B	Bu Dry O ₂ (Balloon)	83	49	0
NaO-t-B	Su Cu(OAc) ₂ Sealed Vial	62	25	2
NaO-t-B	u Ag(Oac) Sealed Vial	67	35	4
NaO-t-B	su -	97	82 (67 isolated)	0

Quantity of Base, The Goldilocks Scenario

• Too little

Base	SM Consumption	NMR Yield of 2	NMR Yield of 3
None	32	15	0

•Too much

Base	SM Consumption	NMR Yield of 2	NMR Yield of 3
NaO-t-Bu (200%)	88	32	32

•Just right

2.	Base	SM Consumption	NMR Yield of 2	NMR Yield of 3
	NaO-t-Bu (20%)	97	82(67 isolated)	0

Reaction Scope

47%

Needs EWG

12%

59%

29%

Reaction Scope (cont.)

Mechanistic Studies

Proposed Mechanism

Reaction Limitations

- Need for EWG
- Need for Arene
- Pre-organization

- Thorpe-Ingold effect, forced planarity

Summary

- Developed an oxidative coupling of an arene with an unactivated methyl group using Pd catalysis and air as a terminal oxidant
- Such reaction can provide economical and environmental benefits by decreasing waste and cost in preparation of preactivated substrates
- Should prompt further investigation of C-H, C-H coupling in an effort to increase the applicability in organic synthesis